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INTRODUCTION

® With the exponential rise in the usage and dependency on data in today’s world, this data’s
security and confidentiality 1s imperative.

® Image cryptography and steganography are two such methods by which data can be secured.

® The former uses mathematical operations to conceal the message and hides its true form,
while the latter uses an 1image to physically camouflage it.

® The proposed encryption machine called GENigma, which uses 1image steganography and
neural cryptography as its base element.

® The 1nitial inspiration for GENigma comes from “Enigma’, an encryption machine used in
the early-to-mid century by the German forces during world war II.



EARLIER WORKS

® R Ramamurthy et al. [1] proposed a new approach and used echo state networks as both encryptors
and decoders. The results of 1mage encryption and decryption were shown, with differences of
33.22% and 37.78% respectively, between the two sets of images for plaintext sensitivity.

® E Volna et al. [2] used ANN for cryptography. Multilayer networks adapted using back propagation
were used for encryption and decryption of the plain text data. The network consisted of 6 nodes each
in the mput and the output layers. Though, the system was found to be noise tolerant, but could only
be used for plain text data.

® T Godhavarn et al. [3] performed synchronization by mutual learning of two separate neural networks
for successtul encryption and decryption. The DES algorithm was used for encryption and decryption,
and was simulated using VHDL.

® J Hayes et al. [4] used unsupervised learning algorithm for producing steganographic images.
Adversarial training method 1s used for both unsupervised and supervised method. The unsupervised
learning method was used to generate steganographic images, while supervised learning method was
used by the steganalyzer for the purpose of detecting the presence of any secret message 1n the image.



PROBLEM STATEMENT

Conventional data encryption approaches using neural-cryptography and steganography:
® Do not produce 100% data retrieval rates
¢ Require large amount of data to train
® Have long training time

® Offer least to none customizability



CONTRIBUTION

® The proposed encryption system called GENigma consists of a neural encryption
network named MayhemNet and an intelligently trained generative network named
Generative Empirical Network or GEN.

® GENigma consists of three neural networks, namely:

= The MayhemNet encoder: encrypts the secret message and does not require any
training, thus reducing the overall training time of the GENigma.

= Generative Empirical Network (GEN): generates the artistic cover image for
performing 1mage steganography.

= The MayhemNet decoder: decrypts the encrypted message.



PROPOSED METHODOLOGY
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Fig 1: Flow Diagram of the proposed encryption system.



PROPOSED METHODOLOGY

MayhemNet has 3 layers:

¢ Data to Numbers Mapping Layer represented as:

E%—)Numerical(P ) =P Numercial (1)
®* Dense Encryption Network Layer represented as:
Eg;,f;e(P Numerical) =P Dense (2)

¢ Sampling Layer represented as:

W,F o
ESampling(PDense) =P Sampling (3)

® The whole MayhemNet can be represented as :
EY" (EWF (Em (P))) = Encrypted(P) (4)

Sampling™ Dense™~ " P—Numerical



CONTINUED

Generative Empirically Network (GEN) can be Mathematically represented as follows :

* Let G, (I, 0) be the generator that trains from iteration number a to iteration number b using training set [/, I] and tries to

map I to I by using, as well as simultaneously learning and updating parameters ®. At iteration b, Generator G will
perform the test using original image I, which 1s the 1nitial input from the users to GEN, and the trained parameters (H)Z as

G(1, @Z) and test result IbT 1s outputted along with trained parameters@,f. Such a generator G can be represented as:

GX(1,8)=1!,0/ (5)

® For the whole training period of 0 to 600 iterations, the equation for the whole training process using equation (5), for
image I provided by the user and for initialized parameters ® , can be given as:

GGG G GANGAV (G @) = Ty O 6

The rest of the generated images in equation (6) will be as follows: I/, IlToo’ IZTOO, I3Too» I 4T00’ IST()O’ I6T00
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ARCHITECTURE
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CONCLUSION

The proposed system has 100% data retrieval rates at the decoding
end.

The proposed system offers high customizability, as the user can plug-
in their own custom made 1mage encoder instead of using the one
provided.

The GEN only needs one image for training, unlike the approaches
seen so far, which required a large dataset.

Every part of GENigma machine 1s highly complex, highly
customizable and utterly implausible to breach.
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